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Abstract

A quantitative structure–activity relationship study based on multiple linear regression (MLR), artificial neural network
(ANN), and self-training artificial neural network (STANN) techniques was carried out for the prediction of gas
chromatographic relative retention times of 13 different classes of organic compounds. The five descriptors appearing in the
selected MLR model are molecular density, Winer number, boiling point, polarizability and square of polarizability. A 5-6-1
ANN and a 5-4-1 STANN were generated using the five descriptors appearing in the MLR model as inputs. Comparison of
the standard errors and correlation coefficients shows the superiority of ANN and STANN over the MLR model. This is due
to the fact that the retention behaviors of molecules show non-linear characteristics. Inspection of the results of STANN and
ANN shows there are few differences between these methods. However, optimization of STANN is much faster and the
number of adjustable parameters for this technique is much less compared with those of the conventional ANN.  2002
Elsevier Science B.V. All rights reserved.

Keywords: Neural networks, artificial, self-training; Retention times, relative; Regression analysis; Multiple linear regression
analysis; Quantitative structure–activity relationships

1. Introduction differences in the structures of the solute molecules
need to be investigated. Using the quantitative

The most important aim of mathematical and structure–activity relationship (QSAR) approach,
statistical methods in chemistry is to provide the structural parameters such as topological, geometric,
maximum information about the selected molecular electronic, and physicochemical descriptors can be
property by analyzing chemical data. In chromatog- generated for molecules and a subset can be selected
raphy, retention is a phenomenon that depends on the that best describes the gas chromatographic retention
solute–solute, solute–stationary phase and solute– parameters.
mobile phase interactions. If the mobile and station- QSAR has been used to obtain models for predict-
ary phases are the same for the solutes, then only the ing the chromatographic behavior of different groups

of compounds [1]. Jurs and co-workers demonstrated
the prediction of the retention indices for diverse sets*Corresponding author. Tel.: 198-21-600-5718; fax: 198-21-
of substituted pyrazines [2,3], polycyclic aromatic601-2983.

E-mail address: jalali@sina.sharif.ac.ir (M. Jalali-Heravi). compounds [4], narcotics [5] and anabolic steroids
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[6]. Katritzky and coworkers have used the QSAR where DW is the change in the weight factor forij

techniques for prediction of retention times of differ- each network node, d is the actual error of node i,i

ent organic compounds [7,8]. Collantes et al. have and O is the output of node j. The coefficients h andj

studied the chromatographic data for polycyclic a are the learning rate and the momentum factor,
aromatic hydrocarbons using the QSAR methods [9]. respectively. These parameters are be optimized
Some other works in this area are listed in Refs. before training the network. Since we have used the
[10–15]. self-trained artificial neural network for the first time,

In the present study, an artificial neural network the optimization procedure of this method is there-
(ANN) and, for the first time, a self-training artificial fore described in detail in the next section.
neural network (STANN) were employed to generate
QSAR models between the relative retention times 2.1. Optimization procedure of self-training
(RRTs) and the structural parameters (descriptors) of artificial neural network
13 different classes of organic compounds. As the
first step, a multiple linear regression (MLR) model A self-training artificial neural network [17] is a
was developed and the descriptors appearing in this new procedure for updating the node’s weights and
model were considered as inputs for the ANN and training of the networks in parallel fashion. An
STANN. Then, the generated ANN and STANN important aspect of the STANN is a network which
were applied for the prediction of relative retention trains another network. The architecture of a STANN
time of organic compounds with diverse structures. is shown in Fig. 1. The structure of network 2 in this
The main aim of this work was investigation of the figure is the same as a BP-ANN. However, during
use of a STANN in predicting the RRT and com-
parison of its results and ease of optimization with a
conventional ANN.

2. Methods

There are many types of network architectures, but
the type that has been most useful for QSAR studies
is the multilayer feed-forward network with back-
propagation (BP) learning [16]. The back-propaga-
tion learning method can be applied to any multi-
layer network that uses differentiable activation
functions and supervised training. An ANN consists
of a number of hidden units (nodes) that receive data
from the outside, process the data, and output a
signal. The back-propagation network receives a set
of inputs, which are multiplied by each node’s
weights. These products are summed for each node
and then a non-linear transfer function is applied. In
order to train the network using the back-propagation
algorithm, the differences between the ANN output
and its desired value are calculated after each
iteration. The changes in the values of the weights
can be obtained using the following equation:

DW (n) 5hd O 1 aDW (n 2 1) (1) Fig. 1. The architecture of a self-training artificial neural network.ij i j ij
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the training, the normalized inputs are increased by 3.2. Descriptor generation
some infinitesimal amount, delta (D). In this regard,
because the transfer function being utilized, a sig- The next step in developing the model was
moid, has a linear region around the value of 0.5, it generation of the numerical description of the molec-
is desirous when adding the delta value to the ular structures. The generated numerical descriptors
normalized input to adjust the input towards the were responsible for encoding important features of
linear region. Thus, the positive delta value should the structures and could be categorized as topo-
be added to normalize inputs which are less than 0.5 logical, geometric, electronic, and physicochemical
and the negative delta values should be added to properties. A total of 77 descriptors were calculated
normalize inputs which are greater than 0.5. For the for each compound in the data set. Topological
hidden layers a similar manner are used. Network 1 descriptors were calculated using two-dimensional
uses from weight updates produced by the training representation of the molecules. In order to calculate
network 2. Thus, training of artificial neural network the electronic and geometric descriptors, the molecu-
1 is not carried out with algorithmic code, but rather lar structures must first be optimized. Therefore, the
by a network training a network. three-dimensional structure of each molecule was

As mentioned before, the STANN was used for optimized using the semi-empirical molecular orbital
the first time for predicting the RRT of various method of AM1 implemented in the MOPAC pack-
organic compounds. The results obtained using this age (version 6) [19].
technique were compared with those of a conven-
tional ANN.

3.3. Regression analysis

The stepwise multiple linear regression procedure
was used for model generation. The procedure for

3. Experimental
screening the descriptors and choosing the best
model is given elsewhere [11]. A total of 19 out of
77 descriptors were removed using the mentioned

3.1. Data set
procedure [11]. Then the stepwise addition method
implemented in the software package of SPSS/PC

Data of 122 organic compounds taken from Ref.
was used for choosing the descriptors contributing to

[18] were used as the data set. The compounds
the RRT [20]. The best selected MLR model is

consist of 13 different classes of organic compounds
presented in Table 2. The five parameters obtained

containing various functional groups, i.e. alcohols,
using the stepwise method and appearing in this

ketones, aldehydes, esters, alkenes, alkynes, alkanes,
model are molecular density (MD), boiling point

halides, thiols, nitro, ethers, cyanides, and sulfides. In
(b.p.), Winer number (WN), polarizability (a) and

Ref. [18], the RRTs of different compounds were 2square of polarizability (a ). The main goal of
determined using a Hewlett-Packard HP 5880 gas

generating the MLR model was to choose a set of
chromatograph. The carrier gas was helium and the

suitable descriptors as inputs for developing the
chromatograms were obtained using a 30 m30.25

ANN and STANN models.
mm I.D., 0.25 mm Rtx-5 column from Restek
(Bellefonte, PA, USA). In the present work, these
compounds were randomly divided into two groups: 3.4. Self-training artificial neural network and
a training set and a prediction set (Table 1). The artificial neural network generation
training and prediction sets consist of 105 and 17
compounds, respectively. The values of retention The STANN and ANN programs were written in
time relative to benzene (RRT) were used as the Fortran 77 in our laboratory. The networks were
dependent variable. The training set was used for generated using the descriptors appearing in the
model generation and the prediction set was used for MLR model as inputs. Therefore, the number of
the evaluation of the models. inputs in the STANN and ANN was five and the
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Table 1
Experimental and calculated values of the RRT for the training and prediction sets

No. Compound RRT RRT RRT RRTEXP STANN ANN MLR

Training set
1 Dibromomethane 1.2668 1.2696 1.3334 1.6996
2 CHCl CH Cl 2.0898 1.8887 1.7737 1.75882 2

3 CCl CH 0.9191 0.8234 0.8802 1.15423 3

4 1,3-Dibromopropane 3.8305 3.8140 3.8523 3.1055
5 CFCl CF Cl 0.5878 0.6148 0.4398 0.46182 2

6 Ethyl disulfide 3.7395 3.7935 3.8705 3.8620
7 3-Bromopentane 2.3527 2.5003 2.4678 2.2350
8 Idomethane 0.5803 0.6502 0.6495 0.7308
9 2-Bromopentane 2.2239 2.3900 2.3646 2.1949

10 1-Pentanethiol 2.7509 2.7244 2.6258 2.1838
11 Ethyl iodide 0.7939 0.8003 0.8821 1.2659
12 1-Butanol 1.0562 1.0111 1.1071 1.3502
13 CH ClCH Cl 0.9423 0.8195 0.8453 1.08682 2

14 1-Bromobutane 1.5094 1.5757 1.6147 1.7260
15 1-Bromopentane 2.9502 2.9915 2.953 2.3854
16 2-Hexanone 2.4268 2.3007 2.1993 1.7985
17 Cyclopentylchloride 2.2720 1.9994 1.8885 1.7536
18 2-Methylheptane 1.9660 2.1251 2.0993 2.0778
19 2-Nitropropane 1.2814 1.5678 1.5986 1.5926
20 Butyl formate 1.5044 1.5676 1.4989 1.3835
21 2-Ethylbutyraldehyde 1.9289 2.0007 1.8791 1.6594
22 2,3,4-Trimethylpentane 1.7248 1.9725 1.9264 2.1144
23 cis-CHCl=CHCl 0.7732 0.6896 0.6719 0.9357
24 Propyl sulfide 3.4429 3.5283 3.6138 2.9332
25 Cycloheptane 2.4215 2.3209 2.2083 1.9883
26 Propyl acetate 1.4114 1.3918 1.3549 1.3157
27 1,3-Dichlorobenzene 4.2362 4.3229 4.4153 3.6739
28 CHCl CH 0.6875 0.6800 0.6824 0.66132 3

29 Ethylcyclohexane 2.9354 2.9560 2.9180 2.4984
30 Dipropyl ether 1.1711 1.0409 1.0686 1.2472
31 Isopropyl acetate 1.0243 1.0474 1.0618 1.1249
32 2,3-Butanedione 0.7187 0.8203 0.8432 0.9357
33 Nitromethane 0.6669 0.6678 0.7582 1.2068
34 2-Methyl-1-propanol 0.8618 0.7990 0.9489 1.1935
35 Cyclopropylcyanide 1.5194 1.4973 1.4477 1.6869
36 Allylsulfide 3.1745 3.2746 3.2018 3.3008
37 1,2-Dichlorobenzene 4.3976 4.4708 4.5224 3.7876
38 1-Methylcyclohexene 2.0159 1.9908 1.9310 2.0775
39 4-Methylcyclohexene 1.6085 1.6363 1.6159 1.8361
40 Methanol 0.4742 0.4303 0.3968 0.3066
41 Methyl propionate 0.8665 0.7821 0.7965 0.8272
42 1-Ethylcyclopentene 1.8348 1.7736 1.7368 1.9139
43 3-Pentanone 1.2444 1.1146 1.1491 1.2302
44 1-Bromopropane 0.8358 0.7936 0.8506 1.0958
45 trans-CHCl=CHCl 0.6553 0.6486 0.6379 0.5429
46 Allyl acetate 1.2808 1.4752 1.4516 1.4141
47 Valeraldehyde 1.2435 1.0941 1.1348 1.2058
48 Ethyl acetate 0.8026 0.7622 0.7727 0.7819
49 3,3-Dimethyl-2-butanone 1.3367 1.6112 1.5462 1.5162
50 2,2,4-Trimethylpentane 1.1403 1.3345 1.3343 1.8425
51 3-Ethylpentane 1.1358 1.1933 1.2097 1.4468
52 trans-2-Heptene 1.3048 1.3443 1.3519 1.6828
53 sec.-Butanol 0.7565 0.6474 0.8253 1.0423
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Table 1. Continued

No. Compound RRT RRT RRT RRTEXP STANN ANN MLR

54 2-Pentanone 1.1689 1.1568 1.2032 1.2766
55 3-Ethyl-2-pentene 1.3151 1.3204 1.3194 1.7577
56 Acetaldehyde 0.4794 0.5536 0.5228 20.4215
57 4-Bromo-m-xylene 4.9433 5.1067 4.8638 5.4243
58 1-Heptyne 1.4709 1.3762 1.3695 1.4531
59 2-Methyl-2-butanol 0.9019 1.0821 1.1555 1.2529
60 2-Bromo-p-xylene 4.9562 4.9068 4.7300 5.1808
61 2-Bromopropane 0.6951 0.6973 0.7143 0.9146
62 3,3-Dimethylpentane 0.9475 1.0242 1.0498 1.3649
63 1-Heptene 1.1771 1.1782 1.1992 1.5007
64 Toluene 1.9918 2.0238 1.9647 2.1144
65 2,4-Dimethylpentane 0.8326 0.9053 0.9252 1.2143
66 Diisopropyl ether 0.7539 0.7382 0.7180 0.9238
67 p-Xylene 3.3243 3.2524 3.2315 3.1011
68 Trimethylacetonitrile 0.9480 1.0569 1.1647 1.2734
69 Ethyl benzene 3.2463 3.1611 3.1435 2.9006
70 o-Xylene 3.5036 3.4672 3.5216 3.1497
71 Cumene 3.7404 3.6233 3.6702 3.4842
72 n-Butylbenzene 4.4965 4.4954 4.5414 4.3501
73 3-Hexyne 1.0247 0.9067 0.9434 1.0975
74 3-Ethyl-1-pentene 0.9522 0.9731 0.9849 1.4133
75 Cyclohexene 1.1043 0.9869 1.0335 1.2499
76 Butyraldehyde 0.7281 0.5286 0.6295 0.6339
77 sec.-Butylbenzene 4.2867 4.2250 4.2885 4.2478
78 Methyl tert.-butyl ether 0.6647 0.6491 0.6470 0.4936
79 Isopropanol 0.5505 0.4015 0.5261 0.6425
80 Propionitrile 0.6943 0.6200 0.6132 0.8659
81 1-Chloropropane 0.6223 0.6206 0.6096 0.2653
82 Propionaldehyde 0.5513 0.4414 0.4930 0.0903
83 2-Butanone 0.7413 0.5378 0.6598 0.7184
84 Ethanol 0.5115 0.4388 0.4483 0.5236
85 Bicyclo[2,1]hepta-2,5-diene 1.3051 1.1173 1.1537 1.4008
86 Methylcyclopentane 0.8379 0.7649 0.8069 0.8602
87 Crotonaldehyde 0.9543 1.0524 1.1379 1.2827
88 Hexane 0.7363 0.7198 0.7463 0.7404
89 2-Chloropropane 0.5565 0.6255 0.6122 0.1043
90 Trifluoromethyl-benzene 1.3526 1.1501 1.3135 1.4211
91 1-Hexyne 0.8176 0.7234 0.7485 0.7261
92 2-Methyl-1-pentene 0.7097 0.6971 0.7033 0.7596
93 1-Hexene 0.7123 0.6981 0.7021 0.7365
94 2,2-Dimethylbutane 0.5941 0.6327 0.6272 0.4454
95 m-Xylene 3.3081 3.2883 3.2836 3.0839
96 2-Methyl-2-propanol 0.5852 0.5048 0.6642 0.7509
97 Acetonitrile 0.5439 0.4994 0.4548 0.5611
98 Methacrylonitrile 0.7548 0.6885 0.8264 0.9768
99 Cyclopentane 0.6568 0.5902 0.6170 0.2531

100 Pentane 0.5498 0.5786 0.5906 20.0407
101 2-Methyl-2-butene 0.5762 0.6095 0.6180 0.1893
102 1,4-Difluorobenzene 1.1153 1.0085 1.0462 1.3913
103 Acrylonitrile 0.5884 0.4012 0.5457 0.6210
104 1-Pentene 0.5392 0.5959 0.5902 20.0639
105 Hexafluorobenzene 0.7762 0.7299 0.8103 0.6996
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Table 1. Continued

No. Compound RRT RRT RRT RRTEXP STANN ANN MLR

Prediction set
106 CH Cl 0.6001 0.6639 0.6278 0.35792 2

107 CH ClCHClCH 1.2406 1.2400 1.2340 1.38012 3

108 Ethyl sulfide 1.2571 1.2480 1.2819 1.4594
109 1,1-Dimethylcyclohexane 2.2450 2.3964 2.3248 2.3131
110 3,3-Diethylpentane 3.3426 3.4279 3.4891 3.0936
111 Heptane 1.2393 1.3299 1.3315 1.4810
112 Butyronitrile 1.0892 1.0090 1.0480 1.3127
113 1-Octyne 2.8834 2.5190 2.4834 2.1098
114 Propyl formate 0.8293 0.8069 0.8152 0.8399
115 1-Propanol 0.6508 0.6036 0.6430 0.9005
116 Tetrahydrofuran 0.8477 0.5892 0.6367 0.5502
117 Isobutyronitrile 0.8441 0.8682 0.9700 1.1553
118 2-Hexyne 1.1062 0.9619 0.9980 1.1539
119 Propyl benzene 3.9369 3.8704 3.9762 3.6283
120 Diethyl ether 0.5592 0.5946 0.5818 20.0410
121 Acetone 0.5460 0.4066 0.4889 0.2288
122 Cyclopentene 0.6371 0.6208 0.6318 0.2761

number of nodes in the output layer was set to be Rtx-5 column are also given in this table. Table 2
one. A three-layer network with a sigmoidal transfer demonstrates the specifications of the selected MLR
function was designed for both STANN and ANN. model. Also, the mean effect of each parameter is
Before training the STANN and ANN, the input and included in this table. The calculated values of RRT
output values of the networks were normalized using this model for the training and prediction sets
between 0.1 and 0.9. The number of nodes in the are presented in Table 1. The variables appearing in
hidden layer, learning rate and momentum were the selected MLR model encode different aspects of
optimized. The initial weights were selected random- the molecular structure. These parameters mainly
ly between 21 and 11. In order to evaluate the show topological and physicochemical characteristics
performance of the STANN and ANN, the standard indicating that these properties of molecules affect
errors of training (SET) and prediction (SEP) were the RRT. MD is defined as the ratio of molecular
used. mass to the Van der Waals volume of the molecules.

This parameter with negative coefficient and mean
effect indicates that as the ratio of mass to volume of

4. Results and discussion the molecules increases the RRT decreases and these
properties play different roles in the retention be-

Table 1 shows that the data set consists of a very havior. The presence of the WN as a topological
diverse set of molecules. The experimental values of descriptor in the model indicates that the RRT
the relative retention time of these compounds on an depends on the degree of branching and compactness

Table 2
Specifications of the selected multiple linear regression model

Descriptor Notation Coefficient Mean effect

Molecular density MD 21.020 (60.159) 21.064
Boiling point b.p. 10.017 (60.001) 11.697
Winer number WN 20.013 (60.002) 20.513
Polarizability a 20.141 (60.076) 20.988

2Square of polarizability a 10.035 (60.006) 11.884
Constant 10.509 (60.303)
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Table 3
aThe values of the descriptors appearing in the models studied in this work

b 2No. MD b.p. WN a a

Training set
1 0.3733 97.0 4 3.5253 12.4274
2 0.6516 113.8 18 5.0319 25.3200
3 0.6531 74.1 16 5.3066 28.1603
4 0.4892 167.0 20 6.1559 37.8951
5 0.5564 47.6 58 6.2045 38.4954
6 0.9503 153.0 35 10.0648 101.2998
7 0.7561 119.0 31 7.3177 53.5483
8 0.3678 42.4 1 2.6754 7.1577
9 0.7563 117.0 32 7.3403 53.8797

10 1.0923 127.0 35 7.8459 61.5575
11 0.4433 72.0 4 4.1017 16.8243
12 1.1800 117.6 20 5.4352 29.5413
13 0.7384 83.5 10 4.1194 16.9692
14 0.7104 101.0 20 6.1372 37.665
15 0.7547 130.0 35 7.3484 53.9988
16 1.1479 127.0 52 7.5974 57.7198
17 0.9516 114.0 26 6.5587 43.0169
18 1.2827 118.0 79 9.6217 92.5772
19 0.9573 120.3 29 5.7899 33.5235
20 1.0487 107.0 56 7.2974 53.2528
21 1.1488 117.0 48 7.5509 57.0163
22 1.2728 113.0 65 9.4798 89.8668
23 0.6119 60.0 18 5.3571 28.6990
24 1.1059 146.0 56 9.3897 88.1667
25 1.1988 118.4 42 8.2177 67.5311
26 1.0449 102.0 52 7.1926 51.7333
27 0.7797 173.0 61 9.4005 88.3693
28 0.7403 57.3 9 4.2436 18.0082
29 1.2019 132.0 64 9.4177 88.6940
30 1.1946 89.0 56 8.1131 65.8228
31 1.0488 90.0 48 7.1037 50.4626
32 0.9681 87.5 29 5.4944 30.1889
33 0.8410 101.2 9 3.3072 10.9378
34 1.1808 107.9 18 5.3761 28.9027
35 1.1041 134.0 17 5.1462 26.4833
36 1.0443 138.0 56 10.2026 104.0925
37 0.7787 180.5 60 9.3398 87.2323
38 1.1695 110.0 42 8.6729 75.2194
39 1.1697 103.0 42 8.4124 70.7684
40 1.1487 64.6 1 1.8252 3.3315
41 1.0212 79.7 31 5.9131 34.9651
42 1.1761 106.0 43 8.5131 72.4723
43 1.1353 101.0 31 6.4230 41.2551
44 0.6542 71.0 10 4.9194 24.2001
45 0.6896 47.5 10 4.3309 18.7568
46 1.0097 103.0 52 7.3152 53.5122
47 1.1426 103.0 35 6.4302 41.3480
48 1.0233 77.1 32 5.9694 35.6337
49 1.1448 106.0 42 7.4558 55.5883
50 1.2771 99.2 66 9.4530 89.3600
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Table 3. Continued
b 2No. MD b.p. WN a a

51 1.2914 93.0 48 8.3892 70.3783
52 1.2606 98.0 56 8.8745 78.7560
53 1.1814 99.5 18 5.3577 28.7046
54 1.1391 105.0 32 6.4043 41.0149
55 1.2485 96.0 48 8.8527 78.3700
56 1.0834 20.1 4 2.7934 7.8032
57 0.7493 214.0 84 11.6086 134.7599
58 1.2394 100.0 56 8.2518 68.0928
59 1.1808 102.0 28 6.4597 41.7281
60 0.7493 200.0 84 11.6087 134.7623
61 0.6568 59.0 9 5.0002 25.0019
62 1.2868 86.0 44 8.3476 69.6820
63 1.2608 93.3 56 8.6632 75.0502
64 1.1366 110.6 42 8.6578 74.9581
65 1.2935 81.0 48 8.3409 69.5712
66 1.1939 68.5 48 7.9349 62.9624
67 1.1393 138.3 62 10.1550 103.1244
68 1.1800 105.5 28 6.3253 40.0097
69 1.1423 136.2 64 9.9172 98.3508
70 1.1390 144.0 60 10.0179 100.3583
71 1.1492 151.0 88 11.0232 121.5099
72 1.1550 183.0 133 12.3781 153.2175
73 1.2543 81.0 35 7.5431 56.8980
74 1.2624 84.0 48 8.5951 73.8749
75 1.1634 83.0 27 7.3255 53.6630
76 1.1258 76.0 20 5.2301 27.3544
77 1.1553 173.0 121 12.2542 150.1654
78 1.1875 55.2 28 6.6538 44.2729
79 1.1777 82.4 9 4.1821 17.4898
80 1.1756 97.2 10 4.0266 16.2138
81 0.9688 46.0 10 4.5265 20.4896
82 1.1136 49.0 10 4.0254 16.2042
83 1.1264 79.6 18 5.2105 27.1491
84 1.1654 78.3 4 3.0454 9.2747
85 1.0606 89.0 36 7.4913 56.1189
86 1.2164 71.8 26 6.8941 47.5290
87 1.0745 102.0 20 5.8154 33.8193
88 1.3116 69.0 35 7.3066 53.3869
89 0.9708 35.7 9 4.5609 20.8021
90 0.8263 101.0 114 8.9249 79.6535
91 1.2654 71.0 35 7.0407 49.5712
92 1.2656 62.0 32 7.4492 55.4901
93 1.2685 63.0 35 7.4567 55.6023
94 1.3046 49.7 28 7.1408 50.9903
95 1.1420 139.1 61 10.0817 101.6410
96 1.1800 82.2 16 5.2765 27.8411
97 1.1696 81.6 4 2.8005 7.8427
98 1.1284 90.3 18 5.5259 30.5352
99 1.2192 49.0 15 5.7120 32.6267

100 1.3296 36.1 20 6.1162 37.4080
101 1.2810 39.0 18 6.4599 41.7303
102 0.8665 88.5 62 7.8724 61.9739
103 1.1135 77.3 10 4.2805 18.3223
104 1.2850 30.0 20 6.2443 38.9912
105 0.6434 81.5 174 9.4022 88.4013
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Table 3. Continued
b 2No. MD b.p. WN a a

Prediction set
106 0.6597 39.8 4 2.8711 8.2431
107 0.7963 96.8 18 5.3236 28.3411
108 1.0773 92.0 20 6.9664 48.5309
109 1.2030 120.0 59 9.3349 87.1409
110 1.2601 146.0 88 10.7168 114.8489
111 1.2932 98.4 56 8.4999 72.2476
112 1.1824 118.0 20 5.2555 27.6200
113 1.2363 126.0 84 9.4566 89.4268
114 1.0229 81.0 35 6.0765 36.9236
115 1.1731 97.2 10 4.2418 17.9931
116 1.0785 66.0 15 5.1164 26.1775
117 0.9779 107.0 32 5.1982 27.0214
118 1.2597 84.0 35 7.5684 57.2801
119 1.1482 159.0 94 11.1562 124.4602
120 1.1872 34.6 20 5.6781 32.2406
121 1.1109 56.2 9 4.0039 16.0312
122 1.1712 44.0 15 5.9404 35.2881

a The definition of the descriptors are given in Table 2.
b The numbers refer to the numbers of the molecules given in Table 1.

of the molecules. The b.p. of the molecules with a length. However, the non-polar Rtx-5 column with
high positive mean effect indicates that as the boiling 5% diphenyl phase is extremely versatile, permitting
point of the molecules increases, the RRT increases the analysis of non-polar to polar compounds and
and this parameter plays a major role in the gas therefore, dispersion interactions play some roles in
chromatographic retention behavior of organic mole- the mechanism of the RRTs obtained using this
cules. In order to improve the statistics of the model, column. The values of the five descriptors appearing
different types of combination of descriptors, such as in the MLR model are shown in Table 3 for all
square and cubic function of descriptors, were ex- molecules included in the training and the prediction
amined. It can be seen from Table 2 that the square sets.

2of polarizability (a ) also appeared in the MLR The next step was the generation of the STANN
model. The presence of this parameter improves the and ANN. Before the training of these networks, the
ability of the model compared with that of a simple parameters of the number of nodes in the hidden
MLR. This could be due to a non-linear relationship layer, learning rate and momentum were optimized.
between the RRT and the descriptors appearing in The procedure for the optimization of these parame-
the MLR model. It is noteworthy that a shows a ters is reported in Refs. [21,22]. Table 4 shows the

2negative contribution to the RRT, while a shows a architecture and specifications of the optimized
large positive contribution. Therefore, one may STANN and ANN. In order to control the overfitting
conclude that the polarizability shows an overall of the networks during the training procedure, the
positive contribution to the RRT of organic com- values of the SET and SEP were recorded after each
pounds. This is in agreement with the experiment 500 iterations. Fig. 2a and b shows the learning
because dispersion interactions play some roles in curves for the STANN and ANN, respectively. As
the mechanism of the RRTs obtained by using polar can be seen from these figures, for the STANN, after
or non-polar columns. It should be noted that for 10 500 iterations the values of SEP started to in-
most columns the compounds in a homologous series crease and overtraining began, but for the ANN, after
will elute according to the chain length. This is 128 000 iterations overtraining began. Therefore, the
caused by the additional Van der Waals attractive training of the networks was stopped at these points.
forces resulting from the additional carbon chain Comparison of the number of iterations for the
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Table 4
Architecture of the STANN and ANN and their specifications

STANN ANN

Number of nodes in the input layer 5 5
Number of nodes in the hidden layer 4 6
Number of nodes in the output layer 1 1
Number of iterations in the beginning of overtraining 10 500 128 000
Learning rate 0.9 0.1
Momentum 0.9 0.1
Transfer function Sigmoid Sigmoid

STANN and ANN indicate that updating of weights
and optimization of the network for STANN is much
faster for the ANN. Besides this advantage, in the
case of the STANN, training of some networks may
be performed in parallel. In addition, the topology of
the STANN and ANN are 5-4-1 and 5-6-1, respec-
tively. This means that the 29 adjustable parameters
for the STANN should be compared with 43 adjust-
able parameters for the conventional ANN. The
smaller number of adjustable parameters for the
STANN reveals the validity of this model in predict-
ing the RRT of organic compounds. For the evalua-
tion of the prediction power of the STANN and
ANN, the trained STANN and ANN were used to
predict the RRT of the molecules included in the
prediction set. The calculated values of the RRT
using these models for the training and the prediction
sets are presented in Table 1. For comparison
purposes, the statistics for the STANN, ANN and
MLR models are shown in Table 5. Correlation
coefficients (R) and SEPs of these models indicate
that the obtained results using STANN and ANN are
much better than those obtained using the MLR
model. This is believed to be due to the non-linear
capabilities of the STANN and ANN.

In order to investigate the predictive ability of the
generated networks, we have randomly chosen four
different test sets, each consisting of 17 molecules,

Table 5
Statistical parameters obtained using the STANN and ANN and
MLR models

Model SET (%) SEP (%) R Rtraining prediction

STANN 2.135 2.364 0.996 0.992
ANN 2.036 2.279 0.995 0.992
MLR 32.027 33.326 0.960 0.951

Fig. 2. A typical learning curve for (a) STANN, (b) ANN.
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Table 6
Comparison of the SET and SEP of the STANN and ANN models
for the four different test sets with the prediction set

Method Model SET (%) SEP (%)

STANN Prediction set 2.135 2.364
Test set I 2.182 1.873
Test set II 2.462 1.624
Test set III 2.117 2.453
Test set IV 2.306 2.508

ANN Prediction set 2.036 2.279
Test set I 2.193 2.316
Test set II 1.946 1.689
Test set III 1.808 2.826
Test set IV 2.042 1.889

and the networks were trained using the remaining
molecules. The results for these test sets are given in
Table 6. As can be seen from this table, the SET and
SEP values for the prediction set and the test sets are
similar for both STANN and ANN methods. This
confirms the predictive ability of these models.

Fig. 3a and b shows the plot of the calculated RRT
values versus the experimental values for the
STANN and ANN models, respectively. These plots
with correlation coefficients of 0.992 demonstrate the
ability of these models in predicting the RRT of the
molecules.

Fig. 4a and b shows the plot of the residuals
against the experimental values of the RRT, for the
STANN and ANN models, respectively. The propa-
gation of the residuals on both sides of zero indicates
that no systematic error exists in the development of
the STANN and ANN.

5. Conclusions
Fig. 3. Plot of the calculated RRT versus the experimental values:
(a) STANN, (b) ANN.The three methods of MLR, ANN and STANN

were used for prediction of the gas chromatographic
relative retention times of 13 different classes of results obtained using STANN and ANN are much
organic compounds. As one may expect the retention better than those using the MLR method, one may
behavior of organic molecules shows some non- conclude that the non-linear characteristics of the
linear characteristics and therefore applying a linear RRT are definite and the MLR model is a very useful
regression method cannot be justified. However, the method for screening the descriptors and choosing
aim of including the MLR model in this study was to inputs for the networks. Inspection of the results
choose a suitable set of numerical descriptors among obtained using STANN and ANN (Table 5) reveals
the vast number of parameters available and to use that there are few differences between these methods
them as inputs for neural network generation. As the in predicting the RRT. However, the only advantages
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